ヒトの免疫システムの全貌

攻撃方法と担当 作成:清水隆文

敵の種類			担当	効果など
毒素		毒素と結合		
及び		ウイルスの結合部に付着	抗体 ^{※1} →その後は食細胞(好中球、マクロ ファージ(MΦ))が処理	毒素が受容体に結合できない。ウイルスが細胞内に入れない。中和作用と呼ばれる
ウイルス		凝集させる		
病原菌	殺傷する	丸ごと食べる	食細胞(好中球、MΦ、樹状細胞,)	食べた後は毒 ^{※2} で殺菌、酵素 ^{※3} で分解
		菌体に孔を開ける	抗体(IgG1、IgG3、IgM)+補体(C5b6789 ^{※4})	菌体に孔が開くと溶菌して死ぬ
	動きを封じる	病原菌の表面を覆う	抗体 →その後は食細胞が処理	病原菌が細胞内に入れない、活動が抑えられる
		凝集させる		
	処分する	丸ごと食べる	MΦ、樹状細胞	食べた後は酵素 ^{※3} で分解、抗原の種類を提示
感染細胞		細胞膜に孔を開ける	CTL ^{※5} やNK ^{※6} 分泌のパーフォリン ^{※7}	グランザイムが細胞内に侵入する
及び		DNAを切断する	CTLやNK分泌のグランザイム ^{※8}	DNA切断後、細胞は自滅(アポトーシス)する
異常細胞		細胞を自滅させる	CTLによるFas・Fasリガンンド ^{※9}	細胞が自滅(アポト―シス)する
	増殖を封じる	凝集させる	抗体 →その後はMΦが処理	異常細胞が働けず、広がれない

攻撃支援方法と担当

敵の種類	支援方法	担当	効果など
	補体を活性化する	抗体(IgG1、IgG3、IgM)	非活性であった補体が活性化する
病原菌	目印を付ける	抗体+補体(C3b)	食細胞に取り込まれやすくなる(=オプソニン化)
感染細胞	各種免疫細胞を活性化する	MΦやT細胞分泌のインターロイキン ^{※10}	食細胞の遊走、リンパ球の増産および活性化
異常細胞	敵の特徴を他の免疫細胞に知らせる	MΦや樹状細胞の抗原提示 ^{※11}	敵の種類に対応した攻撃が可能となる
	敵の特徴を覚える	メモリーCTL、メモリーT細胞、メモリーB細胞	同じ敵が2度目に来たときにすぐに対応可能

補足

※1 抗体	化学的には「免疫グロブリン」と言われる。脊椎動物の形質細胞によって作られる(=無脊椎動物には無い)。			
※2 毒	活性酸素、過酸化水素、次亜塩素酸などが使われる。			
※3 酵素	各種の加水分解酵素があり、グリコシダーゼ、リパーゼ、ホスファターゼ、ヌクレアーゼなどが使われる。			
%4 C5b6789	膜侵襲複合体(MAC:membrane-attack complex)とも呼ばれる。補体は血液中に存在する。			
%5 CTL	Cytotoxic T Lymphocyte;細胞障害性T細胞のことである。			
% 6 NK	Natural Killer cell;ナチュラルキラ―細胞のことである。			
※7 パーフォリン	CTL及びNKが分泌する物質である。			
※8 グランザイム	CTL及びNKが分泌する物質である。			
※9 Fas・Fasリガンンド	FasリガンドはCTLが持つ分子であり、異常細胞の受容体であるFasに結合すると、アポトーシスが誘導される。			
※10 インターロイキン	インターロイキン1から18まで多種類あり、各種の免疫系細胞に指示を与える役割がある。			
※11 抗原提示	敵の断片の一部を細胞表面に提示する機構。T細胞などに認識され、細胞性免疫および液性免疫が活性化される。			

stnv基礎医学研究室 (https://stnv.blog/med/)